[1]Smith SM, Miller KL, Salimi-Khorshidi G, et al. Network modelling methods for FMRI[J]. NeuroImage,2011,54 (2) :875-891. [2]钱秋瑾, 杨莉, 王玉凤. 儿童注意缺陷多动障碍的研究进展[J].北京大学学报:医学版, 2007, 39(3):323-328. Qian Qiujin, Yang Li, Wang Yufeng. Advances on comprehensive research on attention deficit hyperactivity disorder[J]. Journal of Peking University: Health Sciences, 2007, 39(3):323-328. [3]Cheng Wei, Ji X, Zhang J, et al. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques[J]. Frontiers in Systems Neuroscience, 2012,6:68. [4]Dey SB, Rao AR, Shah M. Exploiting the brain’s network structure in identifying ADHD subjects[J]. Frontiers in Systems Neuroscience,2012,6:75. [5]Fair DA, Nigg JT, Iyer S, et al. Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data[J]. Frontiers in Systems Neuroscience, 2013,6:80. [6]Sato JR, Hoexter MQ, Fujita A, et al. Evaluation of pattern recognition and feature extraction methods in ADHD prediction[J]. Frontiers in Systems Neuroscience, 2012,6: 68. [7]Sidhu GS, Asgarian N, Greiner R, et al. Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD[J]. Frontiers in Systems Neuroscience, 2012,6:74. [8]Bohland JW, Saperstein S, Pereira F, et al. Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual subjects[J]. Frontiers in Systems Neuroscience, 2012,6:78. [9]Colby JB, Rudie JD, Brown JA, et al. Insights into multimodal imaging classification of ADHD[J]. Frontiers in Systems Neuroscience, 2012,6:59. [10]Zou QH, Zhu CZ, Yang Y, et al. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF[J]. J Neurosci Methods, 2008,172(1):137-141.
|