设为首页 |  加入收藏
首页首页 期刊简介 消息通知 编委会 电子期刊 投稿须知 广告合作 联系我们
新疆高发病食管癌图像的特征提取及分类

Feature extraction and classificationof X-ray images for Xinjiangesophageal cancer with high morbidity

作者: 孔喜梅  木拉提·哈米提  严传波  姚娟  孙静  阿布都艾尼·库吐鲁克 
单位:新疆医科大学医学工程技术学院(乌鲁木齐830011)
关键词: 食管癌;灰度共生矩阵;小波变换;特征提取;图像分类 
分类号:R318.04;R735.1;TP751
出版年·卷·期(页码):0·0·0(0-0)
摘要:

目的 结合灰度共生矩阵和小波变换的纹理分析方法提取新疆哈萨克族高发病食管癌X射线钡剂造影图像的特征,旨在为放射科医生的诊断决策提供具有实际参考价值的辅助信息,提高食管癌诊断的准确率和效率。方法 选取2种中晚期食管癌——蕈伞型和缩窄型,以及正常食管图像各100张,利用基于灰度共生矩阵的纹理特征提取方法分别提取食管癌X射线图像的角二阶矩、熵、惯性矩、逆差矩及相关性的方差作为纹理特征,同时使用小波变换对食管癌X射线图像进行二层小波分解,获取其高频子图,并提取高频子图的能量特征作为纹理特征。然后,使用C4.5决策树算法构造一个分类器,对正常食管和中晚期食管癌图像进行分类研究。结果 共计提取11维特征,利用单一特征算法进行分类,灰度共生矩阵法分类准确率为64.66%,小波变换法分类准确率为77%。而综合的灰度共生矩阵和小波变换法的分类准确率为81.67%,更适用于正常食管和中晚期食管癌的分类。结论 本研究将灰度共生矩阵、小波变换算法与决策树C4.5相结合,对正常食管与蕈伞型和缩窄型食管癌进行特征提取及分析,结果表明本算法分类准确率较高,为开发食管癌的计算机辅助诊断系统奠定了基础。


Objective In this paper,combining gray level co-occurrence matrix (GLCM) with wavelet transform of texture arithmetic method extracted X-ray image texture of esophageal cancer with high morbidity in Xinjiang. This method provided auxiliary information with reference value for radiologist and enhanced accuracy rate and efficiency of esophageal cancer. Methods Two types of middle and terminal esophageal cancer: fungating type esophageal cancer and constrictive esophageal cancer were selected in the experiment,and 100 images of the two types of esophageal cancers and normal esophagus were selected,respectively. We used GLCM texture feature method to extract angular second moment,entropy,contrast,correlation and inverse difference moment of variance respectively for X-ray images of esophageal cancer. Meanwhile,we employed wavelet transform to process two-dimensional discrete wavelet decomposition at second level,obtained its high-frequency content images,and extracted the energy features of high-frequency content images as texture features. The C4.5 decision tree was employed as a classifier. Results Eleven features were extracted by GLCM and wavelet transform methods. The experimental results showed that using single feature classification,the accuracy rate of GLCM classification and wavelet transform classification reached to 64.66% and 77%,respectively. The accuracy rate of the comprehensive of GLCM and wavelet transform method was 81.67%,more suitable for the classification of normal esophagus and advanced esophageal cancer. Conclusions This method achieved high classification performance and lay the foundation of the computer-aided diagnosis system of Kazakh esophageal cancer in Xinjiang.

参考文献:

服务与反馈:
文章下载】【加入收藏
提示:您还未登录,请登录!点此登录
 
友情链接  
地址:北京安定门外安贞医院内北京生物医学工程编辑部
电话:010-64456508  传真:010-64456661
电子邮箱:llbl910219@126.com